CONTROL OF MERCURY EMISSIONS BY ABSORPTION ON FLYASH – EXPERIMENTAL RESULTS OF THE CONSOL/ALLEGHENY PILOT PLANT PROGRAM

- R. A. Winschel, M. L. Fenger CONSOL Energy Inc.
 - K. H. Payette Allegheny Energy Supply Co., LLC
 - L. A. Brickett National Energy Technology Laboratory, US DOE

CONCEPT

- Absorb Hg on flyash by cooling flue gas to 200-210 °F with air heater and water spray
- Collect flyash with ESP to remove Hg
- Protect against acid corrosion and air heater fouling by introducing Mg(OH)₂ into flue gas upstream of the air heater

POTENTIAL BENEFITS OF TECHNOLOGY

- 70-90% Hg removal
- Projected cost (\$/Ib Hg) an order of magnitude lower than carbon injection by utilizing unburned carbon
- Suitable for retrofitted or new plants
- Potentially suitable for the full range of coal types
- Effective SO₃ reduction at air heater inlet
 - ► Visible plume mitigation
 - ▶ TRI reduction
 - ► SCR/SNCR benefits
 - Secondary fine particulate reduction
- Potential to improve heat rate by 2%
 - ▶2% reduction in NO_x, SO₂, CO, particulate and CO₂
 - ▶~ \$600,000/y fuel cost savings for 600 MW plant

HOST PLANT

PILOT PLANT PROCESS SCHEMATIC

PILOT PLANT OPERATION

Test Condition	Total Operating Hours	Continuous Operating Hours-Max.	Mg(OH)2 Injection	ESP Flue Gas Temperature - °F
Baseline	1198	332	NO	300
Short Term	390	13	YES	230-250
Long Term	393	75	YES	200-210

EXPERIMENTAL PLAN SO₃ CONTROL

- AH flue gas flowrate: 14,500 lb/h (1.5 MWe)
- Mg/SO₃ molar ratio: 4/1 (<3 ppmv AH inlet)</p>
- Gas temperature at AH outlet: 225 230 °F
- Gas sampling: SO₃ at AH
- Coal samples: host plant
- Evaluate air heater fouling: ΔP and dissection of AH baskets
- Monitor corrosion: probe and coupons at ESP
- Sootblowing frequency: 8 hours during Baseline
 & Short Term, 24 to 75 hours during Long-Term

PILOT AIR HEATER

FLUE GAS

Mg(OH)₂

INJECTION

EFFECTIVENESS OF Mg(OH)₂ INJECTION FOR SO₃ CONTROL

	Average SO ₃ Concentration, ppmv (Acid Dew Point, *F				
Mg:SO ₃ Mole Ratio (Test Condition)	Before Mg Injection at Location A	After Mg Injection* > Removal % at Location H	Air Heater Gas Out at Location B		
None (Baseline)	12.5 (274)	-	2.1 (237)		
2/1 (Short Term)	31.4 (278)	6.8 (256) > 79%	1.2 (230)		
4/1 (Short Term)	32.5 (288)	1.8 (236) > 94%	0.7 (222)		
4 to 27/1 (Long Term)	14.8 (276)	2.2 (239) > 84 %	-		

AIR HEATER PRESSURE DROP

AIR HEATER – CE ELEMENT

EXPERIMENTAL PLAN MERCURY CONTROL

- ESP flue gas flowrate: 3,900 lb/h (100 SCA)
- Mg/SO₃ molar ratio: 4/1 (<3 ppmv AH Inlet)
- Gas temperature at ESP inlet: 200 210 °F
- Flue gas cooling: air heater (75 hours cont.) and water spray (4 hours cont.)
- Gas sampling: OH Hg at ESP inlet and outlet
- Flyash & coal samples: pilot ESP and host plant
- Evaluate ESP performance: PM removal >99%
- Evaluate stability: captured Hg on flyash

PILOT ESP

PILOT ESP INSTALLATION

MERCURY CAPTURE BY ESP

Test Condition	ESP Inlet, Location F Temp °F	Hg Removal By ESP, Gas Inlet to Outlet Average %	"Carbon Treat Rate" Average Ibs Carbon / million scf and acf (Range of Data)	
Baseline	290	26%	41 (41) scf	26 (26) acf
Short-Term	230-250	49%	35 (46-23) scf	23 (31-15) acf
Long-Term	200-210	81%	47(71-23) scf	33 (51-15) acf

MERCURY vs CARBON IN FLYASH AT 300 °F and 210 °F

Hg on FLYASH vs TEMPERATURE 5.9-7.2% CARBON – PILOT PLANT

Hg on FLYASH vs TEMPERATURE 16-18% CARBON - HOST PLANT

OXIDIZED Hg in FLUE GAS vs CARBON AT LOWER TEMPERATURES

ELEMENTAL Hg in FLUE GAS vs CARBON AT LOWER TEMPERATURES

Hg REMOVAL VS CARBON RATE

Hg REMOVAL vs % UBC with 200 °F FLUE GAS

PRINCIPAL CONCLUSIONS

- Over 90% ESP mercury removal demonstrated with air heater cooling at 200-210 °F (limited WS cooling showed similar results)
- Mercury removal sensitive to temperature, carbon content of flyash and carbon content of the flue gas
- Baseline conditions give about 26% mercury removal
- At 200-210 °F, elemental and oxidized mercury effectively captured by the flyash
- Mg(OH)₂ slurry injection is effective for removal of SO₃ and eliminates rapid fouling of the air heater
- Pilot ESP performed satisfactorily at low temperature conditions

ADDITIONAL CONCLUSIONS

- Mercury volatility and leaching tests did not show any stability problems
- No significant corrosion detected at the air heater and on corrosion coupons at the ESP
- Corrosion probe showed reduced acid condensation on corrosion probe during Mg(OH)₂ injection

ACKNOWLEDGEMENT

- US DOE, NETL, CA No. DE-FC26-01NT41181 (Lynn Brickett)
- Alstom Power, Inc.
- Environmental Elements Corp.
- Carmeuse NA, Inc.
- J. A. Withum, J. E. Locke and R. M. Statnick